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Abstract. Observational studies in the literature have highlighted low levels of 
user satisfaction in relation to the support for ontology visualization and 
exploration provided by current ontology engineering tools. These issues are 
particularly problematic for non-expert users, who rely on effective tool support 
to abstract from representational details and to be able to make sense of the 
contents and the structure of ontologies.  To address these issues, we have 
developed a novel solution for visualizing and navigating ontologies, KC-Viz, 
which exploits an empirically-validated ontology summarization method, both 
to provide concise views of large ontologies, and also to support a ‘middle-out’ 
ontology navigation approach, starting from the most information-rich nodes 
(key concepts). In this paper we present the main features of KC-Viz and also 
discuss the encouraging results derived from a preliminary empirical 
evaluation, which suggest that the use of KC-Viz provides performance 
advantages to users tackling realistic browsing and visualization tasks. 
Supplementary data gathered through questionnaires also convey additional 
interesting findings, including evidence that prior experience in ontology 
engineering affects not just objective performance in ontology engineering 
tasks but also subjective views on the usability of ontology engineering tools.  

Keywords: Ontology Visualization, Key Concepts, Ontology Summarization, 
Ontology Navigation, Ontology Engineering Tools, Empirical Evaluation. 

1 Introduction 

Browsing ontologies to make sense of their contents and organization is an essential 
activity in ontology engineering. This is particularly the case today, as the significant 
increase in the number of ontologies available online means that ontology engineering 
projects often include a reuse activity, where people first locate ontologies which may 
be relevant to their project – e.g., by using ontology search engines, such as Sindice 
[1] or Watson [2], and then examine them to understand to what extent they provide 
solutions to their modelling needs.  

In addition, ontologies are no longer developed and used exclusively by specialized 
researchers and practitioners. On the contrary, as ontologies are increasingly used in a 



variety of scenarios, such as research, healthcare, and business, more and more 
domain experts and other relatively inexperienced users are involved in the ontology 
engineering process, especially in the context of community-wide ontology 
development activities [3]. 

However, evidence gathered through observational studies [4] indicates low levels 
of user satisfaction with the tool support currently available to users for visualizing 
and navigating ontologies, in particular in relation to the lack of effective mechanisms 
for ‘content-level visualization’, including support for selective visualization of 
ontology parts, summaries, and overviews [4]. Needless to say, these problems affect 
in particular inexperienced users, who rely on effective tool support to abstract from 
representational details and make sense of the contents and the structure of ontologies.  

Attempting to address these issues, we have developed a novel solution for 
visualizing and navigating ontologies, KC-Viz, which builds on our earlier work on 
key concepts extraction [5], both as a way to provide concise overviews of large 
ontologies, and also to support a ‘middle-out’ ontology navigation approach, starting 
from the most information-rich nodes1 (key concepts). Building on its ability to 
abstract out from large ontologies through key concept extraction, KC-Viz provides a 
rich set of navigation and visualization mechanisms, including flexible zooming into 
and hiding of specific parts of an ontology, history browsing, saving and loading of 
customized ontology views, as well as essential interface customization support, such 
as graphical zooming, font manipulation, tree layout customization, and other 
functionalities. KC-Viz is a core plugin of the NeOn Toolkit and can be downloaded 
from http://neon-toolkit.org. 

In this paper we introduce KC-Viz and we present the results from a preliminary 
empirical evaluation, which suggest that the use of KC-Viz provides performance 
advantages to users tackling realistic browsing and visualization tasks. Moreover, we 
also report on additional findings gathered through questionnaires, which offer a 
number of other insights, including evidence that prior experience in ontology 
engineering affects not just objective performance in ontology engineering tasks but 
also subjective views on the usability of ontology engineering tools.  

2 Approaches to visualizing and navigating ontologies 

2.1 Literature Review 

The issue of how best to support visualization and navigation of ontologies has 
attracted much attention in the research community. As Wang and Parsia emphasize 
[6], “effective presentation of the hierarchies can be a big win for the users”, in 
particular, but not exclusively, during the early stages of a sensemaking2 process, 
when a user is trying to build an initial mental model of an ontology, focusing less on 

                                                             
1 In the paper we will use the terms ‘node’, ‘concept’, and ‘class’ interchangeably to refer to 

classes in an ontology. 
2 In the rest of the paper we will use the term ‘sensemaking’ to refer to a specific ontology 

engineering task, where the user is primarily concerned with understanding the contents and 
overall structure of the ontology, i.e., acquiring an overview of the concepts covered by the 
ontology and the way they are organized in a taxonomy.  



specific representational details than on understanding the overall organization of the 
ontology. In particular, as discussed in [7], there are a number of functionalities that 
an effective visualization system needs to support, including (but not limited to) the 
ability to provide high level overviews of the data, to zoom in effectively on specific 
parts of the data, and to filter out irrelevant details and/or irrelevant parts of the data. 

An approach to addressing the issue of providing high level overviews of 
hierarchical structures focuses on maximizing the amount of information on display, 
through space-filling solutions, such as those provided by treemaps [8]. Treemaps 
have proved to be a very successful and influential visualization method, used not just 
to represent conceptual hierarchies but also to visualize information in several 
mainstream sectors, including news, politics, stock market, sport, etc.  However, 
while treemaps define a clever way to provide concise overviews of very large 
hierarchical spaces, they are primarily effective when the focus is on leaf nodes and 
on a particular dimension of visualization, in particular if colour-coding can be used 
to express different values for the dimension in question. However, as pointed out in 
[6], treemaps are not necessarily effective in supporting an understanding of 
topological structures, which is what is primarily needed in the ontology sensemaking 
context highlighted earlier. 

State of the art ontology engineering toolkits, such as Protégé3 and TopBraid 
Composer4, include visualization systems which use the familiar node-link diagram 
paradigm to represent entities in an ontology and their taxonomic or domain 
relationships. In particular, both the OwlViz visualizer in Protégé and the ‘Graph 
View’ in TopBraid make it possible for users to navigate the ontology hierarchy by 
selecting, expanding and hiding nodes. However OwlViz arguably provides more 
flexibility, allowing the user to customize the expansion radius and supporting 
different modalities of use, including the option of automatically visualizing in 
OwlViz the current selection shown in the Protégé Class Browser. 

SpaceTree [9], which also follows the node-link diagram paradigm, is able to 
maximize the number of nodes on display, by assessing how much empty space is 
available. At the same time it also avoids clutter by utilizing informative preview 
icons. These include miniatures of a branch, which are able to give the user an idea of 
the size and shape of an un-expanded subtree at a very high level of abstraction, while 
minimizing the use of real estate.	
  	
  

Like treemaps, CropCircles [6] also uses geometric containment as an alternative 
to classic node-link displays. However, it tries to address the key weakness of 
treemaps, by sacrificing space in order to make it easier for users to understand the 
topological relations in an ontology, including both parent-child and sibling relations. 
An empirical evaluation comparing the performance of users on topological tasks 
using treemaps, CropCircles and SpaceTree showed that, at least for some tasks, users 
of CropCircles performed significantly better than those using treemaps [6]. However, 
SpaceTree appears to perform significantly better than either treemaps or CropCircles 
on node finding tasks.  

A number of ‘hybrid’ solutions also exist, such as Jambalaya [10] and Knoocks 
[11], which attempt to combine the different strengths of containment-based and 

                                                             
3 http://protege.stanford.edu/. 
4 http://www.topquadrant.com/products/TB_Composer.html. 



node-link approaches in an integrated framework, by providing both alternative 
visualizations as well as hybrid, integrated views of the two paradigms.  

The group of techniques categorized in [12] as “context + focus and distortion” 
are based on “the notion of distorting the view of the presented graph in order to 
combine context and focus. The node on focus is usually the central one and the rest 
of the nodes are presented around it, reduced in size until they reach a point that they 
are no longer visible” [12]. These techniques are normally based on hyperbolic views 
of the data and offer a good trade-off – a part of the ontology is shown in detailed 
view, while the rest is depicted around. A good exemplar of this class of approaches is 
HyperTree [13].  

Finally, we should also consider in this short survey the most ubiquitous and least 
visual class of tools, exemplified by plugins such as the Class Browser in Protégé and 
the Ontology Navigator in the NeOn Toolkit. These follow the classic file system 
navigation metaphor, where clicking on a folder opens up its sub-folders. This 
approach is ubiquitous in both file system interfaces and ontology engineering tools 
and, in the case of ontologies, it allows the user to navigate the ontology hierarchy 
simply by clicking on the identifier of a class, to display its subclasses, and so on. 
While superficially a rather basic solution, especially when compared to some of the 
sophisticated visual metaphors that can be found in the literature, this approach can be 
surprisingly effective for two reasons: i) it is very familiar to users and ii) it makes it 
possible to display quite a lot of information in a rather small amount of space, in 
contrast with node-link displays, which can be space-hungry. As a result it is not 
surprising that these interfaces often perform better in evaluation scenarios than the 
graphical alternatives. For instance, the evaluation reported in [14] shows that 
subjects using the Protégé Class Browser fared better than those using alternative 
visualization plugins in a number of ontology engineering tasks.  

2.2 Discussion 

It is clear from the review in the previous section that different approaches exhibit 
different strengths and weaknesses and that in general the effectiveness of a particular 
solution depends on the specific task it is being used for. For example, the evaluation 
presented in [6] suggests that CropCircles may perform well in ‘abstract’ topological 
tasks, such as “Find the class with the most direct subclasses”, but SpaceTree appears 
to be better in locating a specific class. As already mentioned, here we are primarily 
concerned with the ontology sensemaking task, so what we are looking for is effective 
support for the user in quickly understanding what are the main areas covered by the 
ontology, how is the main hierarchy structured, etc.  

The problem is a particularly tricky one because, once an ontology is large enough, 
it is not possible to show its entire structure in the limited space provided by a 
computer screen and therefore a difficult trade-off needs to be addressed. On the one 
hand the information on display needs to be coarse-grained enough to provide an 
overview of the ontology, thus ensuring the user can maintain an overall mental 
model of the ontology. On the other hand, an exploration process needs to be 
supported, where the user can effectively home in on parts of the ontology, thus 
changing the level of analysis, while at the same time not losing track of the overall 
organization of the ontology. In sum, we can say that the main (although obviously 
not the only) issue is one of reconciling abstraction with focus.  



However, a problem affecting all the approaches discussed in the review is that all 
of them essentially use geometric techniques to providing abstraction, whether it is 
the use of a hyperbolic graph, geometric containment, or the miniature subtrees 
provided by SpaceTree.   

In contrast with these approaches, human experts are able to provide effective 
overviews of an ontology, simply by highlighting the key areas covered by the 
ontology and the classes that best describe these areas. In particular, the work reported 
in [5] provides empirical evidence that there is a significant degree of agreement 
among experts in identifying the main concepts in an ontology, and it also shows that 
our algorithm for key concept extraction (KCE) is also able to do so, while 
maintaining the same level of agreement with the experts, as they have among 
themselves [5]. Hence, the main hypothesis underlying our work on KC-Viz is that 
effective abstraction mechanisms for ontology visualization and navigation can be 
developed by building on the KCE algorithm, thus going beyond purely geometric 
approaches and focusing instead on displaying the concepts which are identified as 
the most useful for making sense of an ontology.  

3 Overview of KC-Viz 

3.1 Key Concept Extraction 

Our algorithm for key concept extraction [5] considers a number of criteria, drawn 
from psychology, linguistics, and formal knowledge representation, to compute an 
‘importance score’ for each class in an ontology. In particular, we use the notion of 
natural category [15], which is drawn from cognitive psychology, to identify 
concepts that are information-rich in a psycho-linguistic sense. Two other criteria are 
drawn from the topology of an ontology: the notion of density highlights concepts 
which are information-rich in a formal knowledge representation sense, i.e., they have 
been richly characterized with properties and taxonomic relationships, while the 
notion of coverage states that the set of key concepts identified by our algorithm 
should maximize the coverage of the ontology with respect to its is-a hierarchy5. 
Finally, the notion of popularity, drawn from lexical statistics, is introduced as a 
criterion to identify concepts that are likely to be most familiar to users.  

The density and popularity criteria are both decomposed in two sub-criteria, global 
and local density, and global and local popularity respectively. While the global 
measures are normalized with respect to all the concepts in the ontology, the local 
ones consider the relative density or popularity of a concept with respect to its 
surrounding concepts in the is-a hierarchy. The aim here is to ensure that ‘locally 
significant’ concepts get a high score, even though they may not rank too highly with 
respect to global measures.  

Each of the seven aforementioned criteria produces a score for each concept in the 
ontology and the final score assigned to a concept is a weighted sum of the scores 
resulting from individual criteria. As described in [5], which provides a detailed 
account of our approach to key concept extraction, the KCE algorithm has been 

                                                             
5 By ‘is-a hierarchy’ here, we refer to the hierarchy defined by rdfs:subClassOf relations. 



shown to produce ontology summaries that correlate significantly with those 
produced by human experts.  

3.2 Exploring ontologies with KC-Viz 

Normally, a KC-Viz session begins by generating an initial summary of an ontology, 
to get an initial ‘gestalt’ impression of the ontology. This can be achieved in a number 
of different ways, most obviously by i) selecting the ontology in question in the 
‘Ontology Navigator’ tab of the NeOn Toolkit, ii) opening up a menu of options by 
right clicking on the selected ontology, and then iii) choosing Visualize Ontology  
Visualize Key Concepts, through a sequence of menus. Figure 16 shows the result 
obtained after performing this operation on the SUMO ontology, a large upper level 
ontology, which comprises about 4500 classes. The version used in these examples 
can be downloaded from http://www.ontologyportal.org/SUMO.owl.  

 
Figure 1. Initial visualization of the SUMO ontology. 

The summary shown in Figure 1, which has been  generated by the KCE algorithm, 
includes 16 concepts because we have set the size of our ontology summary to 15 and 
the algorithm has automatically added the most generic concept, owl:Thing, to ensure 
that the visualization displays a connected graph. If we wish to display more or less 
succinct graphs, we can do so by changing the size of the ontology summary. The 
solid grey arrows in the figure indicate direct rdfs:subClassOf links, while the dotted 
green arrows indicate indirect rdfs:subClassOf links. As shown in the figure, by 
hovering the mouse over an indirect rdfs:subClassOf links, we can see the chain of 
rdfs:subClassOf relations, which have been summarized by the indirect link. In this 

                                                             
6  As shown in Figure 1, KC-Viz is based on the node-link diagram paradigm. However, as 

correctly pointed out by an anonymous reviewer, the KCE algorithm can in principle be used 
with alternative visualization styles, and indeed this is something we plan to explore in the 
future. The rationale for adopting the node-link diagram paradigm in the first instance is that 
this is a familiar representation for users and we wish to test our hypothesis that the use of 
key concepts can succeed in equipping this approach with effective abstraction mechanisms.  



case, we can see that an indirect rdfs:subClassOf link in the display summarizes the 
chain of direct rdfs:subClassOf relations, [Process -> Physical -> Entity -> 
owl:Thing]. 

In order to help users to quickly get an idea of the size of a particular part of the 
ontology, for each node displayed, KC-Viz shows two numbers, indicating the 
number of direct and indirect subclasses.  We refer to these as subtree summaries. For 
instance, Figure 1 tells us that class Process has 10 direct subclasses and 879 indirect 
ones. More information about a class can be found by hovering over the node in 
question, as shown in Figure 2. Alternatively, if a more thorough analysis of the 
definition is required, the user can right-click on the node and then select the Inspect 
menu item, to open up the definition of the class in the Entity Properties View of the 
NeOn Toolkit. 

Once an initial visualization is produced, it is possible to use it as the starting point 
for a more in-depth exploration of the various parts of the ontology. To this purpose, 
KC-Viz provides a flexible set of options, allowing the user to control at a rather fine-
grained level the extent to which she wishes to open up a particular part of the 
ontology. For example, let’s assume we wish to explore the subtree of class Process in 
more detail, to get a better understanding of the type of processes covered by the 
ontology. Figure 3 shows the menu which is displayed, when right-clicking on class 
Process and selecting Expand. In particular, the following four options (corresponding 
to the four panes of the window shown in Figure 3) for customizing node expansion 
are available: 

 
Figure 2. Tooltips provide additional information about a class.  

• Whether to open up the node using taxonomic relations, other relations (through 
domain and range), or any combination of these. That is, while we primarily use 
KC-Viz to support sensemaking, focusing on taxonomic relations, KC-Viz can 
also be used to visualize domain (i.e., non taxonomic) relations. 

• Whether or not to make use of the ontology summarization algorithm, which in 
this case will be applied only to the selected subtree of class Process. As in the 
case of generating a summary for the entire ontology, the user is given the 
option to specify the size of the generated summary. Here it is important to 
emphasize that this option makes it possible to use KC-Viz in a ‘traditional’ 
way, by expanding a tree in a piecemeal way, without recourse to key concept 
extraction. This is especially useful when dealing with small ontologies, or when 
the user is aware that only a few nodes will be added by the expansion operation, 
even without recourse to the KCE algorithm. 

• Whether or not to limit the range of the expansion – e.g., by expanding only to 1, 
2, or 3 levels. 



• Whether to display the resulting visualization in a new window (‘Hide’), or 
whether to add the resulting nodes to the current display. In the latter case, some 
degree of control is given to the user with respect to the redrawing algorithm, by 
allowing her to decide whether she wants the system to redraw all the nodes in 
the resulting display (Redraw), or whether to limit the freedom of the graph 
layout algorithm to rearrange existing nodes (Block Soft, Block Hard). The latter 
options are particularly useful in those situations where expansion only aims to 
add a few nodes, and the user does not want the layout to be unnecessarily 
modified – e.g., because she has already manually rearranged the nodes 
according to her own preferences. In our view, this feature is especially 
important to avoid the problems experienced by users with some ‘dynamic’ 
visualization systems, where each node selection/expansion/hiding operation 
causes the system to rearrange the entire layout, thus making it very difficult for 
a user to retain a consistent mental map of the model. 

 
Figure 3. Options for further exploration starting from class Process.  

The result of expanding the subtree under class Process, using key concepts with 
the size of the summary set to 15, with no limit to the expansion level, while hiding 
all other concepts, is shown in Figure 4. 

While the flexible expansion mechanism is the key facility provided by KC-Viz to 
support exploration of ontology trees under close user control, a number of other 
functionalities are also provided, to ensure a comprehensive visualization and 
navigation support.  These include: 

• A flexible set of options for hiding nodes from the display. 
• Integration with the core components of the NeOn Toolkit, including the Entity 

Properties View and Ontology Navigator. This means that it is possible to click 
on nodes in KC-Viz and highlight them in these components, as well as clicking 
on items shown in the Ontology Navigator and adding them to the visualization 
in KC-Viz.  



• A dashboard, shown in Figure 5, which allows the user to move back and forth 
through the history of KC-Viz operations, to modify the formatting of the layout, 
and to save the current display to a file, among other things. 

• A preferences panel, which allows the user to set defaults for the most common 
operations and also enables her to switch to a more efficient (but sub-optimal) 
algorithm when dealing with very large ontologies.  

 
Figure 4. Expanding class Process by key concepts.  

 
Figure 5. The KC-Viz dashboard. 

4 Empirical Evaluation 

4.1 Experimental Setup 

4.1.1 Tool Configurations 
In order to gather initial data about the performance of KC-Viz, we have carried out a 
preliminary empirical evaluation, which required 21 subjects to perform four ontology 
engineering tasks, involving ontology exploration. The 21 subjects were drawn from 
the members of the Knowledge Media Institute, the Computer Science Department at 
the University of Bologna, and Isoco iLab and were randomly allocated to three 
different groups, labeled A, B, and C, where each group used a particular 
configuration of ontology engineering tools.  

In particular members of group A carried out the tasks using the NeOn Toolkit 
v2.5, without any visualization support. More precisely, they were only allowed to 
use the search functionality, the Ontology Navigator and the Entity Properties View. 
The role of this group was to provide a baseline to the experiment, providing us with 
some data on how effectively people can tackle ontology exploration tasks, without 
any visualization support.  The members of Group C were asked to solve the tasks 



using KC-Viz7, together with the search functionality provided by the NeOn Toolkit. 
To ensure a separation between groups A and C, members of the latter group were 
explicitly forbidden from using the Ontology Navigator for exploration, although they 
were allowed to use it as an interface between the search facility in the NeOn Toolkit 
and KC-Viz8. Finally, the members of Group B carried out the tasks using the Protégé 
4 environment, v4.1.0, in particular using the search functionality, the class browser 
and the OwlViz plugin. This configuration was chosen for three reasons: i) we wanted 
to compare KC-Viz to a robust tool, widely used in concrete projects by members of 
the ontology engineering community9, to maximize the value of the experiment to the 
community; ii) while OwlViz uses the same node-link paradigm as KC-Viz, its design 
is rather different from KC-Viz; and iii) having considered the visualizers available in 
other state of the art ontology engineering tools, such as the NeOn Toolkit (Kaon 
Visualizer) and TopBraid (Graph View), we subjectively concluded that OwlViz 
appears to provide a more user friendly and flexible functionality, than the 
comparable ones available in TopBraid and the NeOn Toolkit.  

4.1.2 Exploration Tasks 
For the tasks we used a smaller version of the SUMO ontology, compared to the one 
referred to in section 4, which comprises 630 classes10. SUMO was chosen because, 
as an upper-level ontology, it is reasonable to expect most people to have familiarity 
with the notions it covers, in contrast with highly specialized ontologies in technical 
domains. This particular version of SUMO was chosen for a number of reasons: 

• After running a couple of pilots, it became obvious that the ontology provided 
enough complexity to challenge the subjects and to potentially provide data 
about the effectiveness of different tool configurations. 

• An ontology with thousands, rather than hundreds, of nodes would have required 
more time for the experiment, potentially reducing the number of subjects 
willing to take part. 

• The more complex the ontology, the higher the risk that a high number of 
subjects (many of whom could not be considered as experienced ontology 
engineers) would not complete the task, thus potentially reducing the number of 
useful data points.  

The tasks given to the subjects are shown in Table 1. This set of tasks was 
designed to ensure coverage of different exploration strategies, which are typically 
required in the context of a sensemaking activity11. Task 1 can be seen as a ‘pure’ 

                                                             
7 The members of Group C used version 1.3.0 of the KC-Viz plugin, which is part of the core 

set of plugins included with version 2.5 of the NeOn Toolkit. 
8 The search facility in the NeOn Toolkit locates an entity in the Ontology Navigator and then 

the user can use the “Visualize in KC-Viz” menu item, to add the located entity to the current 
KC-Viz display. 

9  To our knowledge Protégé is the most widely used ontology engineering environment 
currently available.  

10 This can be found at http://www.ontologyportal.org/translations/SUMO.owl. 
11 It is important to emphasize that there is no direct mapping between KC-Viz features and the 

evaluation tasks chosen for this study. This is not accidental, as we are not interested in 
performing experiments on tasks which are artificially manufactured for KC-Viz. In addition, 



topological task, along the lines of the tasks used in the evaluation described in [6], in 
the sense that it asks the user to locate a node with a specific topological property. 
Task 2 is similar to Task 1, however it also requires the user to examine, as a 
minimum, the labels of the classes, rather than considering them only as abstract 
nodes in a node-link diagram. Tasks 3 and 4 require a mix of top-down and bottom-up 
exploration of the ontology and in addition Task 4 requires the user to understand part 
of the ontology at a deeper level than mere topological structure. Moreover, Task 4 
also allowed us to test to what extent tools are able to help when the ontology has a 
non-standard conceptualization, which may easily confuse users, whether experts or 
novices. In particular, the SUMO ontology models class CurrencyCoin as a subclass 
of class Text, which is something many people could find surprising.  

 
T1. Which class has the highest number of direct subclasses in the ontology? 
T2. What is the most developed (i.e., has the biggest subtree) subclass of class Quantity 
found in the ontology at a concrete level of granularity (i.e.,  do not consider abstract 
classes which have the term ‘quantity’ in their id)? 
T3. Find three subclasses of Agent, at the most abstract level possible (under Agent of 
course), which are situated at the same level in the hierarchy as each other, and are also 
subclasses of CorpuscularObject. 
T4. We have two individual entities (a particular copy of the book War&Peace and a 
particular 5p coin). Find the most specific classes in the ontology, to which they belong, 
say P1 and P2, and then identify the most specific class in the ontology, say C1, which is 
a superclass of both P1 and P2 – i.e., the lowest common superclass of both P1 and P2. 

Table 1. Ontology Engineering Tasks. 

For each task, the subjects were given a 15 minutes time slot. If they were not able 
to solve a particular task within 15 minutes, that task would be recorded as ‘fail’. 
Before the experiment, every subject filled a questionnaire, answering questions about 
his/her expertise in ontology engineering, knowledge representation languages, and 
with various ontology engineering tools, including (but not limited to) NeOn and 
Protégé. None of the subjects had much direct experience with the SUMO ontology. 

4.1.3 Session Setup 
At the beginning of the session a subject would be briefed about the purpose of the 
experiment. To avoid biases in favour or against a particular tool, subjects were 
simply told that the purpose of the experiment was “to test different configurations of 
ontology engineering tools”. The subject would then be given a tutorial (max 10 
minutes) about the specific set of tools he/she would be using. The tutorial was given 
by the person in charge of the experiment (the ‘administrator’). In total four 
administrators were used. To minimize differences between the tutorials given by 
different administrators, these were given a precise list of the features that ought to be 
shown to each specific group. For the tutorial we used the Pizza ontology v1.5, which 
can be found at http://www.co-ode.org/ontologies/pizza/2007/02/12/. 

After the tutorial, the subjects were asked to do a ‘warm-up task’. This was exactly 
the same as T1, however it was carried out on a rather small ontology, AKTLite, a 

                                                                                                                                                  
to ensure repeatability, the evaluation tasks used in this study are rather fine-grained and are 
associated to precise performance criteria. 



subset of the AKT reference ontology12, which has been used in a variety of projects 
and applications for representing data about academic organizations. While the AKT 
ontology contains 170 classes, the AKTLite ontology only contains 85 classes. The 
AKTLite ontology consists of two sub-ontologies, AKT Support and AKT Portal, and 
can be found at http://technologies.kmi.open.ac.uk/KC-Viz/evaluation/AKTLite.zip13. 
The subjects were given 10 minutes to solve the warm-up task. 

All the tasks, including the warm-up task, were recorded using screen capture 
software. After completing the task, the subjects were asked to fill a SUS usability 
questionnaire14 and to provide qualitative data about their experience with the 
particular tool configuration they used, including overall impression of the tool, 
strengths and weaknesses, etc. Finally, the subjects in groups A and B were given a 
demo of KC-Viz and asked to provide feedback about the tool. This allowed us to get 
feedback about KC-Viz from all 21 participants in the evaluation.  

4.2 Results 

4.2.1 Task Performance 
Out of 84 tasks in total (4 * 21), 71 were completed within the 15 minutes time limit, 
while 13 tasks were not completed, a 15.47% percentage failure. The 13 failures were 
distributed as follows: 5 in group A (NTK), 6 in group B (OwlViz), and 2 in group C 
(KC-Viz). Table 2 shows the average time taken by each group in each task, as well 
as the total averages across groups and tasks15. As shown in the table, on each of the 
four tasks the fastest mean performance was with KC-Viz, whose overall mean 
performance was about 13 minutes faster than OWLViz, which in turn was about two 
minutes faster than NTK. The mean performance time for OwlViz was faster than 
NTK for task 3, slower for the others. Although not significant, the difference in total 
time taken across the four tasks with the three different tools appeared to be 
approaching significance, F(2, 20) = 2.655, p = 0.098. 

The difference in performance across the three tools on Task 1, was statistically 
significant F(2, 20) = 9.568, p < 0.01. A Tukey HSD pairwise comparison revealed a 
significant difference between both KC-Viz and NTK (p < 0.01) and KC-Viz and 
OwlViz (p < 0.01), however not between NTK and OwlViz. Although mean 
performance was faster for KC-Viz across the board, performance differences on the 
other three tasks did not reach statistical significance. By some margin, the least 
significant result was found for Task 4 (p = 0.755). As discussed earlier, Task 4 
involved more problem solving steps than the other tasks (i.e., finding direct parent 
classes for suggested instances and then their common parent) and an answer that was 
counter-intuitive to many of the subjects (i.e., a CurrencyCoin being a subclass of 

                                                             
12 http://www.aktors.org/publications/ontology/. 
13 For the sake of repeatability all tools and all ontologies used in the evaluation are publicly 

available online, while the tasks carried out in the evaluation are described in this paper. 
14 http://www.usabilitynet.org/trump/documents/Suschapt.doc. 
15 For tasks not completed within the time limit, we consider a 15 minutes performance.  This 

could be modified to consider ‘penalties’, such as a 5 minutes penalty for a non-completed 
task.  However, adding such penalties does not lead to meaningful changes in the 
interpretation of the data, other than increasing the performance gap between the KC-Viz 
group and the others.  



Text). Due to the more complex nature of the problem, we hypothesize that other 
factors, beyond the features provided by a particular ontology engineering tool, 
influenced performance on this task.  

Nevertheless these results suggest advantages for KC-Viz in supporting users in 
such realistic browsing and visualization tasks. In particular it is reasonable to assume 
that increasing the sample size beyond the seven per condition in the current study 
could be expected to lead to statistical significance for overall performance and 
possibly also for other individual tasks. 

 
  NTK OWLViz KCViz Overall 
  mean s.d. mean s.d. mean s.d. mean s.d. 

Task 1 12:03 02:51 12:19 04:16 05:10 03:07 09:50 04:44 
Task 2 06:43 04:45 07:20 03:55 04:03 02:15 06:02 03:52 
Task 3 11:00 05:31 07:24 04:27 06:25 05:06 08:16 05:12 
Task 4 08:01 05:56 08:23 05:28 06:17 05:15 07:34 05:21 
Total 37:47 15:02 35:26 15:36 21:55 10:32 31:43 15:01 

Table 2. Experimental results (in min:secs). 

It is interesting to note that it is the first task that most clearly distinguished the 
performance of KC-Viz relative to the other tools. This was the first of the four tasks 
that used the SUMO ontology. Performance on this task would therefore have 
involved developing some initial overall conceptualization of the ontology, its 
structure, size and scope, as well as finding ways to navigate it. It is possible therefore 
that the use of KC-Viz is particularly effective, when users are confronted with large 
and unfamiliar ontologies. 

4.2.2 Other quantitative findings 
Usability scores were calculated using the SUS formula for each of the three 
conditions – see Table 3. The mean usability score was slightly higher for KC-Viz, 
though very similar across the three tools and not statistically significant.  

 
 NKT OwlViz KC-Viz 

mean s.d. mean s.d. mean s.d. 
Usability 

score 
26.9 5.1 25.7 4.3 27.1 5.8 

Table 3. Usability scores. 

However, for each subject, two sub-scores were calculated from the experience 
questionnaire. The first seven questions in the questionnaire are related to experience 
with ontologies and ontology languages. The scores on these questions were summed 
to give a measure of ontology experience. The scores on the final six questions were 
summed to give a score related to experience with ontology engineering tools.  

A positive correlation was found between the ontology experience score and the 
usability score, r = 0.546, p < 0.05, while a significant correlation was not found 
between the score for experience with tools and the usability score.  This appears to 
indicate that perceived usability probably reflects the greater ability of subjects, who 
are more experienced in the use of ontologies, to adapt to the features, and 



compensate for the shortcomings, of whatever tool provided for the task. These 
findings also suggest that the results of usability questionnaires in this kind of 
evaluations should be treated with much caution and ideally triangulated with other 
sources of data. 

The ontology experience score also had a significant negative correlation with the 
total time spent across the four tasks (i.e. the higher the ontology experience, the 
lower the time to complete the task), r = -0.476, p < 0.05, as well as on task 3, r = -
0.511, p < 0.05. Correlation between experience of ontology engineering tools and 
task performance was statistically significant for task 1 (r = -0.469, p < 0.5) and task 3 
(r = -0.452), and was close to significance on overall performance (r = -0.410, p = 
0.065). 

These findings suggest that prior experience with both ontologies and associated 
tools increases task performance regardless of the toolset used. The deeper 
understanding that the expert has of the underlying ontological constructs and the 
heuristics and techniques developed through experience allows the expert to more 
easily interpret and adapt to whatever tool is provided. Therefore, both differences in 
performance and usability judgements can be expected to be harder to find when 
testing with experts than when testing with users with lower levels of experience. 

Given the effect of experience on usability judgements and performance, an 
analysis was conducted to verify that performance differences across the three tools 
were not due to a skewed distribution of experience across the three conditions. 
However, experience scores were similar across the subjects in the three conditions 
and were not statistically significant. This demonstrates that variation in performance 
across the tools was not due to a bias in the distribution of experience across the three 
conditions. 

4.2.3 Qualitative Results 
As already mentioned, the free text questions on the post-task questionnaire elicited 
views on the perceived strengths and weaknesses of the tool used by each subject. 
Additionally, subjects who did not use KC-Viz provided feedback following a demo. 

A grounded theory approach [16] was used to build categories of comments that 
either expressed positive feedback, offered criticism, or suggested improvements. 
Categories were discarded when they only contained comments from a single subject. 
Because of the page limit constraint on this paper, we do not have enough space here 
to discuss this analysis in detail, hence we only highlight the main findings. 

The three main categories of positive comments concerned the flexible support 
provided by KC-Viz to manipulate the visual displays; the abstraction power enabled 
by the KCE algorithm; and the value of the subtree summaries provided by KC-Viz.  
These results are encouraging in the sense that they provide some initial indication 
that there is probably a direct causal link between the use of key concepts as an 
abstraction mechanism and the good performance of KC-Viz on the evaluation tasks, 
even though these were not designed specifically to map directly to KC-Viz features. 

The three main categories of negative comments included: criticism of the tree 
layout algorithm used by KC-Viz, which does not allow display rotation and at times 
generates overlapping labels; the lack of transparency of the KCE algorithm, which 
does not allow the user to configure it, or to clarify why a node is considered more 
important than others; and the lack of integration between KC-Viz and 
reasoning/query support in the NeOn Toolkit.  



5 Conclusions 

Exploring a large ontology, particularly when it is unfamiliar to the user, can be 
characterized as information foraging [17]. Information foraging theory, drawing on 
ecological models of how animals hunt for food, proposes the notion of information 
scent. An animal foraging for food will follow a scent in order to locate a promising 
patch rich in sources of food. Analogously, an information forager will follow an 
information scent in order to locate rich information sources. In a hypertext 
environment, the name of a link, a preview of the information source, or even the 
source URL may give the information forager clues as to the potential profitability of 
following the link. This helps the forager to choose between alternative paths in the 
search for information. 

The support provided by KC-Viz for displaying key concepts and using these as 
the basis for further exploration can be seen as assisting information foraging from an 
ontology. In particular, the flexible set of options provided by KC-Viz for 
manipulating the visualization enables the user to construct a view on the ontology 
that allows them to compare the information scent of different paths through the 
ontology and control how they pursue these paths. Key concepts use a number of 
factors to estimate the importance of a particular class and therefore provide means 
for estimating the potential profitability of an information scent. In addition, subtree 
summaries provide a topological clue as to the potential profitability of a class.  

This perspective might help explain why KC-Viz was found to be particularly 
advantageous when exploring a large ontology for the first time and indeed both key 
concepts and subtree summaries were highlighted as strengths of the approach, while 
the lack of these kinds of abstraction/summarization mechanisms were identified by 
users as a deficit of both the NTK and OwlViz configurations. 

The empirical study also offers lessons learned for future evaluations of ontology 
browsing and visualization tools. In particular it showed that significant prior 
experience in ontology engineering enables users to adapt well to different tool 
configurations and perform well regardless of the specific configuration they are 
using. In addition, it also showed that experts can have relatively positive usability 
judgments of interfaces. Both of these observations suggest that users having a broad 
range of expertise should be gathered for usability testing and that the results from 
experiments that fail to triangulate multiple sources of data, including usability scores, 
task performance and qualitative feedback, should be treated with caution. 

Our future work has two broad strands. First of all, we intend to further develop 
KC-Viz, taking on board the feedback gathered during the evaluation.  In particular, 
improving the layout algorithm, opening up the KCE algorithm to users, and 
integrating KC-Viz with ontology reasoning and querying are all priorities for 
development. In addition, we also intend to capitalize on the 21 videos collected 
during the evaluation, both to undertake a fine-grained analysis of the navigational 
strategies employed by users, and also to uncover possible misconceptions revealed in 
the use of the various ontology tools. It is hoped that from these analyses we will then 
be able to generate additional design recommendations for future versions of KC-Viz.  



References 

1. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H. and Tummarello, G. 
(2008). Sindice.com: a document-oriented lookup index for open linked data. Int. J. 
Metadata, Semantics and Ontologies, Vol. 3, No. 1, pp.37–52 (2008). 

2. d’Aquin, M. and Motta, E. (2011). Watson, more than a Semantic Web search 
engine. Semantic Web 2(1), IOS Press.  

3. Noy, N. F., Tudorache, T., de Coronado, Sh., and Musen, M. A. (2008). Developing 
Biomedical Ontologies Collaboratively. In Proceedings of the AMIA Annual 
Symposium, pp. 520–524. 

4. Dzbor, M., Motta, E., Buil Aranda, C., Gomez-Perez, J.M., Goerlitz, O., and Lewen, 
H. (2006). Developing ontologies in OWL: An observational study. Workshop on 
OWL: Experiences and Directions, November 2006, Georgia, US. 

5. Peroni, S., Motta, E., d'Aquin, M. (2008). Identifying key concepts in an ontology 
through the integration of cognitive principles with statistical and topological 
measures. Third Asian Semantic Web Conference, Bangkok, Thailand. 

6. Wang, T.D. and Parsia, B. (2006). Cropcircles: Topology Sensitive Visualization of 
Owl Class Hierarchies. In Proceedings of the 5th International Semantic Web 
Conference, Georgia, US. 

7. Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for 
Information Visualizations. In Proceedings of the 1996 IEEE Symposium on Visual 
Languages (VL '96). IEEE Computer Society, Washington, DC, USA. 

8. Shneiderman, B. (1992). Tree Visualization with Tree-Maps: A 2d Space-Filling 
Approach. ACM Trans. Graph., 1992. 11(1): p. 92-99. 15. 

9. Plaisant, C., Grosjean, J., and Bederson, B. B. (2002). Spacetree: Supporting 
Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. In 
Proc. of the Intl. Symposium on Information Visualization. 

10. Storey, M. A., Musen, M.A., Silva, J., Best, C.,  Ernst, N., Fergerson, R. and Noy, 
N.F. (2001). Jambalaya: Interactive visualization to enhance ontology authoring and 
knowledge acquisition in Protege.  Workshop on Interactive Tools for Knowledge 
Capture, K-CAP-2001, Victoria, B.C., Canada.  

11. Kriglstein, S. and Motschnig-Pitrik, R. (2008). Knoocks: A New Visualization 
Approach for Ontologies. In Proceedings of the 12th International Conference on 
Information Visualisation (IV '08), pp. 163-168. IEEE Computer Society, 
Washington, DC, USA. 

12. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and Giannopoulou, E. (2007). 
Ontology Visualization Methods - a Survey. ACM Computing Surveys, 39(4).  

13. Souza, K., Dos Santos, A., et al. (2003). Visualization of Ontologies through 
Hypertrees. In Proc. of the Latin American Conference on Human-Computer 
Interaction. pp. 251-255. 

14. Katifori, A., Torou, E., Halatsis, C., Lepouras, G., Vassilakis, C. (2006). A 
Comparative Study of Four Ontology Visualization Techniques in Protege: 
Experiment Setup and Preliminary Results. In Proceedings of the 10th Int. Conference 
on Information Visualisation (IV'06), pp. 417-423, London, UK. 

15. Rosch, E. (1978). Principles of Categorization. Cognition and Categorization. 
Lawrence Erlbaum, Hillsdale, New Jersey (1978). 

16. Birks, M., and Mills, J. (2011). Grounded Theory: A Practical Guide. SAGE 
Publications Ltd. 

17. Pirolli, P. and Card, S. K. (1999). Information Foraging. Psychological Review, 106 
(4), pp. 643-675. 


