
Embedding semantic annotations within texts: the
FRETTA approach

Gioele Barabucci, Silvio Peroni, Francesco Poggi, Fabio Vitali
Department of Computer Science, University of Bologna, Bologna, Italy

{barabucc, speroni, fpoggi, fabio}@cs.unibo.it

ABSTRACT
In order to make semantic assertions about the text content
of a document we need a mechanism to identify and orga-
nize the text structures of the document itself. Such mech-
anism would closely resemble a document-oriented markup
language and would be free of the classical constraints of
an embedded markup language, having no limitations given
by sequentiality, containment, or contiguity of text frag-
ments. In the past years we developed EARMARK, our
OWL proposal for expressing arbitrary semantic annota-
tions about the structure and the text content of a docu-
ment. In this paper we describe FRETTA, our mechanism
for rendering arbitrary EARMARK annotations (including
non-sequential, non-hierarchical and non-contiguous ones)
in XML, bringing into a unifying framework a half dozen
of syntactic tricks used in literature to handle overlapping
structures in a strictly hierarchical language.

Categories and Subject Descriptors
I.7.2 [Document And Text Processing]: Document Prepa-
ration—Markup languages

General Terms
Languages

Keywords
EARMARK, embedded markup, overlapping markup

1. INTRODUCTION
The main purpose of markup is to state something about

the text content it contains. This is both true when markup
aims mainly at describing the structural characteristics of
the text content of a document (e.g., HTML [6] and TEI
[12]) as well as when it is used as the linearisation format
for semantic models (e.g., RDF/XML [2] and RDFa [1]). As
it has been said, “markup is not part of the text or content of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

the expression [of a document] but tells us something about
it” [3]. Thus, under this point of view, there is no differ-
ence between “embedded” markup (e.g., XML vocabularies
when used as document-oriented languages) and “semantic”
markup (i.e., embedding semantic statements using a lin-
earisation suitable to the format of the host document, such
as RDFa for HTML) [9]. In fact, they are both following the
same principles:

• they define a syntax to express relations between the
annotations and the text – for XML, this means brack-
eted elements, wrapping around text fragments and
other elements, while for RDF this means “subject -
predicate - object” statements;

• they use (implicit or explicit) document-specific se-
mantics for characterising what the markup refers to
– informal human-readable definitions of the purpose
of each element and attribute in XML (e.g., what pur-
pose is the element p used for in HTML) and formally
defined logic formulas in RDF (e.g., in order to ground
the RDFS class foaf:Person1).

A major difference in these approaches is the syntactical
flexibility of their meta-level models, usually forcing doc-
uments to respect specific syntactic constraints, such as a
mandatory tree structure for XML documents or the impos-
sibility of using literal values as subjects in RDF statements.

In order to go beyond the limitations of the tree structure
for XML vocabularies, a large amount of scientific commu-
nities developed “workarounds”, or “tricks”, for expressing
directed graphs in a tree-based syntax. In practice, this
means allowing overlapping hierarchies in XML, and it is
done in a number of ways by embedding special elements
within the main structure of the document [4]. Surprisingly,
to date there is a large amount of applications (e.g., Wikis,
Microsoft Word, Open Office) that require directed graphs,
and that ended up using such workarounds in their storing
formats [5].

EARMARK [5] is our proposal for expressing arbitrary
and non-embedded semantic annotations about the struc-
ture and the text content of a document using OWL. This
meta-markup language overcomes the limitations given by
the workarounds based on XML (causing much ambiguity
of the interpretation of multiple embedded hierarchies) pro-
viding advanced features such as multiple overlapping hi-
erarchies over the same text fragments, and subject to no
constraints by sequentiality, containment, or contiguity of
text fragments.
1http://xmlns.com/foaf/0.1/Person

In this paper we introduce Fretta (From EARMARK To
Tag), a general and extensible mechanism for expressing
EARMARK annotations in an embedded syntax such as
XML. Fretta allows the conversion of EARMARK docu-
ments into formats that use XML plus some syntactic tricks
for representing element overlaps. To do so, users tell Fretta
which tricks are used by which format. With this informa-
tion, Fretta can serialise an EARMARK document into an
XML document compliant with the destination format and
the tricks it uses.

The rest of the paper is structured as follows: in Section 2
we introduce previous works related to the field of overlap-
ping markup. In Section 3 and Section 4 we come to the
main discussion of the paper, presenting EARMARK and,
then, Fretta. In Section 5 we evaluate, by means of a com-
parison with a golden standard, the capabilities of Fretta in
terms of quality of the returned output. Finally, in Section 6
we conclude the paper, drawing on-going and future research
directions.

2. RELATED WORKS
Even before markup languages, the need to associate dif-

ferent annotations to a single piece of text was widespread,
as were techniques that assisted document creators in this
task. One example in which these problems are often founds
are plays in verses. In plays, authors specify more than the
dialogue: the script also states which character is saying each
line, how different characters interrupt or interact with each
other, how the scene changes while the actors are speaking,
etc. When a play is in verses, each verse is often composed
of parts of dialogues by different characters, and each frag-
ment must be said with the correct rhythm, so as to make the
fundamental beat of the verse perceivable by the audience
below the individual voices of the different actors. Consider
for instance the following extract from La Mort d’Agrippine
by Cyrano de Bergerac:

TIBERE
Poursuivez ...

AGRIPPINE
Quoi , Seigneur?

TIBERE
Le propos detestable

Ou je vous ai surprise.

AGRIPPINE
Ah! Ce propos damnable d’une

si grande horreur tous mes sens travailla

This fragment shows two overlapping hierarchies over the
same content: the first hierarchy describes which character
is playing which dialogue lines, the second hierarchy groups
spoken words into poetical lines2 under a specific meter (see
the overall structure in Fig. 1).

When written as a TEI document, the first hierarchy
would look like the following snippet of XML:

<body >
<sp><speaker >Tibere </speaker >

Poursuivez ...</sp>

2The term “line” in English refers to both the individual
utterance of a speaking character in a play and the basic unit
of a poetical text, so as to make “the lines of the characters
overlap the lines of the verse” correct but obscure.

<sp><speaker >Agrippine </speaker >
Quoi , Seigneur?</sp>

<sp><speaker >Tibere </speaker >
Le propos detestable ou je
vous ai surprise.</sp>

<sp><speaker >Agrippine </speaker >
Ah! Ce propos damnable d’une si grande
horreur tous mes sens travailla </sp ></body >

The second hierarchy, while containing basically the same
content, groups it in a rather different way:

<body >
<l>Poursuivez ... Quoi , Seigneur? Le propos

detestable </l>
<l>Ou je vous ai surprise. Ah! Ce propos

damnable d’une </l>
<l>si grande horreur tous mes sens

travailla </l></body >

To represent these two hierarchies in a single XML doc-
ument, various techniques have been developed in the past.
The TEI guidelines [12] describe a few methods that are
used to express multiple hierarchies over the same content
as a single XML hierarchy.

The easiest of these techniques uses milestones, i.e. over-
lapping structures are expressed through a pair of empty
elements to mark the boundaries of the “content”. Using
milestones for expressing elements l, the two hierarchies of
the previous example could be fused in a single hierarchy
such as:

<sp><speaker >Tibere </speaker >
<l sID="l1" />Poursuivez ...</sp>

<sp><speaker >Agrippine </speaker >
Quoi , Seigneur?</sp>

<sp><speaker >Tibere </speaker >
Le propos detestable <l eID="l1" />

<l sID="l2" />Ou je vous ai surprise.</sp>
<sp> ... <l eId="l2" /></sp> ...

Another technique commonly used is fragmentation: over-
lapping structures are split into individual, non-overlapping
elements that are linked through id–idref pairs. Our exam-
ple rewritten using the fragmentation technique would look
like the following snippet:

<sp><speaker >Tibere </speaker >
<l xml:id=’v1p1 ’ next=’#v1p2 ’>
Poursuivez ...</l></sp>

<sp><speaker >Agrippine </speaker >
<l xml:id=’v1p2 ’ next=’#v1p3 ’>Quoi ,
Seigneur?</l></sp>

<sp><speaker >Tibere </speaker >
<l xml:id=’v1p3 ’>Le propos detestable </l> ...

None of these techniques is right or wrong on its own.
Depending on the context in which a document has been
created, the constraints imposed by the software that must
process it and the stylistic preferences present in the com-
munity that will deal with it, there may be techniques that
are more acceptable than others.

Unfortunately, this approach to the overlap problem poses
serious interoperability issues when documents must be ex-
changed between different communities or pieces of software.
An example of such issues can be seen in the way the ODT
format and the OOXML format deal with versioning anno-
tations. Automatic conversion between these two formats
is made even more complicated by the fact that ODT and
OOXML rely on different techniques: ODT uses milestones,
while OOXML uses fragmentation [5].

All those aforementioned (and few other) techniques are
fully described from theoretical and applicative points of
view in [8] and [4], where a number of algorithms to convert
XML documents with overlapping structures from and to
the most common approaches are presented.

Beside the introduced XML-based approaches to overlap,
other solutions use different underlying models and newly
invented XML-like languages that allow the expression of
overlaps through some kind of syntactical flourishing. For
instance, TexMecs [7] is a markup language that allows mul-
tiple hierarchies through appropriate workarounds, such as
standoff markup. LMNL [13] is a general data model based
on the idea of layered text fragments and ranges, where mul-
tiple types of overlap can be modelled using concepts drawn
from the mathematical theory of intervals. XConcur [11] is
a similar solution based on the representation of multiple
hierarchies within the same document through layers.

Figure 1: Two alternative TEI markup hierarchies
built upon the same text content.

3. EXPRESSING MULTIPLE MARKUP HI-
ERARCHIES USING EARMARK

EARMARK (Extremely Annotational RDF Markup) [5]
is a different approach to meta-markup based on ontologies
and Semantic Web technologies. The basic idea is to model
EARMARK documents as collections of addressable text
fragments, and to associate such text content with OWL as-
sertions that describe structural features as well as semantic
properties of (parts of) that content. As a result, EAR-
MARK allows multiple overlapping hierarchies where the
textual content within the markup items belongs to some
hierarchies but not to others.

In this section we introduce the main capabilities of EAR-
MARK3 using step by step examples (written in Turtle [10])

3An introduction to EARMARK can be found in [5].

where we are going to implement (part of) the example
shown in Fig. 1.

In EARMARK, all the textual content of a document is
defined through the class Docuverse. In the following ex-
cerpt, an individual belonging to a Docuverse subclass (i.e.,
StringDocuverse) is defined as string container of the all the
document text4:

:textual -content a earmark:StringDocuverse
; earmark:hasContent "Tibere Poursuivez ...

Agrippine Quoi , Seigneur? Tibere Le
propos detestable Ou je vous ai surprise.
Agrippine Ah! Ce propos damnable d’une

si grande horreur tous mes sens travailla
"^^xsd:string .

In order to compose the first line of the example (i.e., the
first element l) we need to create three different text nodes in
correspondence of “Poursuivez...”, “Quoi, Seigneur” and “Le
propos détestable”. In EARMARK, text nodes are definable
through the class Range. For creating the three text nodes
we need, three different individuals of PointerRange (i.e., a
subclass of Range) are defined as pairs of starting and ending
locations on the docuverse content:

:poursuivez a earmark:PointerRange
; earmark:refersTo :textual -content
; earmark:begins "7"^^ xsd:nonNegativeInteger
; earmark:ends "21"^^ xsd:nonNegativeInteger .

:quoi -seigneur a earmark:PointerRange
; earmark:refersTo :textual -content
; earmark:begins "32"^^ xsd:nonNegativeInteger
; earmark:ends "47"^^ xsd:nonNegativeInteger .

:le-propos -detestable a earmark:PointerRange
; earmark:refersTo :textual -content
; earmark:begins "55"^^ xsd:nonNegativeInteger
; earmark:ends "75"^^ xsd:nonNegativeInteger .

Finally, the element l is created through the class Element,
that is a subclass of MarkupItem. So as to define order
among items contained by the element, it is used an external
ontology5 that was built to define ordered and unordered
collections of OWL entities, such as lists, sets and bags.
Therefore, we can create the new element l as follows:

:first -element -l a earmark:Element , c:List
; earmark:hasGeneralIdentifier "l"
; c:firstItem [c:itemContent :poursuivez
; c:nextItem [c:itemContent :quoi -seigneur
; c:nextItem [c:itemContent

:le-propos -detestable]]] .

Since both markup items and ranges are clearly and uni-
vocally identifiable through IRIs, EARMARK allows to de-
fine overlapping elements, such as the first element l and
the first element sp, both that include the same text node
“Poursuivez...” as shown as follows:

:first -element -sp a earmark:Element , c:List
; earmark:hasGeneralIdentifier "sp"
; c:firstItem [c:itemContent

:first -element -speaker
; c:nextItem [c:itemContent :poursuivez]].

:first -element -speaker a earmark:Element ...

4The prefixes rdfs and xsd refer respectively to RDF Schema
and to XML Schema.
5The Collection Ontology, available at
http://swan.mindinformatics.org/ontologies/1.2/collections.
owl. The prefix c refers to its ontological lentities.

Of course EARMARK, whose core ontological classes and
properties are illustrated in Fig. 2, allows to express more
than what we introduced, such as multiple repeatability of
items, ordered and non-ordered markup items, subclasses
of Range able to express starting and ending locations as
XPath expressions on XML strings, subclasses of Docuverse
that refers indirectly to the content of a document through
its URI, and generic RDF statements involving any items
defined through the EARMARK ontology.

Figure 2: A graphical representation of the EAR-
MARK ontology.

4. APPROACHING THE XML OVERLAP-
PING MARKUP USING FRETTA

The issue of studying and sketching algorithms for the au-
tomatic and semi-automatic conversion of multi-hierarchical
markup documents into simple XML tree structure has been
studied before from a pure theoretical perspective [8]. In
fact, no implementations has been developed in the past
years, in order to make this conversion process effective and
used by interested research communities and practitioners.

Trying to address this issue, we developed Fretta (From
EARMARK To Tag), a general and extensible Java frame-
work for expressing EARMARK annotations in an embed-
ded XML syntax. Users that want to convert from EAR-
MARK into XML document formats (that use different tricks
to store overlapping hierarchies) must indicate which trick
are used in a certain format and how EARMARK elements
can be encoded in that format. Once Fretta has been sup-
plied with this information, it can perform the requested
conversion, passing through four different and consecutive
steps that will be illustrated in the following sections.

4.1 Tricks specification
In this step, Fretta adds semantic assertions to all the

markup items indicated by the user in a particular XML
configuration file. By means of this file, the user can specify
rules (elements “trick”) to define which trick, among all the
available ones – i.e., milestones, fragmentation, stand-off,
dominance embedding of an element, “copy of” and “same
as” – has to be used for encoding either a particular element
(element “refID”), all the elements having a particular name
(element “refGID”) or all the elements having a particular
namespace (element “refNS”). For instance, if we would en-
code “http://www.example.com/el1” using a milestone, all
the elements l through fragmentation, and all the elements
having namespace “http://www.namespace.com” with dom-
inance embedding, we would write as follows:

<!ENTITY trick "http :// fpoggi.web.cs.unibo.it/
fretta/overlap/overlaptrick.owl#">

<trickspec >
<trick >

<refID >http ://www.example.com/el1 </refID >
<type >&trick;Milestone </type ></trick >

<trick >
<refGID >sp </refGID >
<type >&trick;Fragmentation </type ></trick >

<trick >
<refNS >http ://www.namespace.com </refNS >
<type >&trick;Dominance </type ></trick >

</trickspec >

All the URIs within the element type must refer to indi-
viduals of the class Trick as defined in the ontology6 char-
acterising overlapping tricks that we developed7.

Starting from the configuration file, Fretta adds automat-
ically, to the input EARMARK document, assertions that
relates, through the OWL property toEncodeWith defined
in the tricks ontology, each element indicated to the related
trick, as shown in the following excerpt (taking into account
again the EARMARK document introduced in Section 3):

:first -element -l trick:toEncodeWith
trick:Fragmentation .

:second -element -l trick:toEncodeWith
trick:Fragmentation .

:third -element -l trick:toEncodeWith
trick:Fragmentation .

4.2 Structural conversion
Taking into account all the assertions added in the pre-

vious step, the framework runs a pure-structural conversion
of the EARMARK document. The output of this step is a
new EARMARK document in which some elements – i.e.,
those specified by the user through the configuration file –
are transformed opportunely by using the associated trick.

For instance, if we consider the second rule (i.e., the sec-
ond element “trick”) of the above configuration file, and we
ask Fretta to apply it on the EARMARK implementation
of the document introduced partially in Section 3, we will

6Available at http://fpoggi.web.cs.unibo.it/fretta/overlap/
overlaptrick.owl (the prefix trick it is used for referring to
its entities).
7Besides what is already implemented, it is possible to ex-
tend the set of tricks managed by Fretta in two steps. First,
to develop a JAR package that contains a Java class han-
dling the conversion into XML according to the rationale of
the new trick. Second, to extend the tricks ontology with
the information about the new trick.

Figure 3: The result of the application of the frag-
mentation trick on all the element l of the document
firstly introduced in Fig. 1.

obtain a new EARMARK document having all the elements
l fragmented and embedded within all the element sp of the
document, as shown in Fig. 3 and (partially) as follows:

:aFragmentation a trick:Fragmentation
; c:firstItem [c:itemContent

:fragment1 -first -element -l
; c:nextItem [c:itemContent

:fragment2 -first -element -l
; c:nextItem [c:itemContent

:fragment3 -first -element -l]]] .

:first -element -sp a earmark:Element , c:List
; earmark:hasGeneralIdentifier "sp"
; c:firstItem [c:itemContent

:first -element -speaker
; c:nextItem [c:itemContent

:fragment1 -first -element -l]] .

:fragment1 -first -element -l
a earmark:Element , c:List
; earmark:hasGeneralIdentifier "l"
; c:firstItem [c:itemContent :poursuivez]...

4.3 Semantic conversion
Of course, each XML format has different way of encoding

overlapping tricks. For example, each milestone pair of ele-
ments in TEI and ODT adopts the same general structural
organization – i.e., two empty elements where the former
refers to the latter through a idref-id pair of attributes –
but may differ in element and attribute names – in fact,
TEI use the attributes “sID” and “eID” for identifying those
elements, while ODT uses the attribute “text:change-id”.

For that reason, and strictly depending on the final format
the user wants to obtain, Fretta allows to use (and be ex-
tended easily with) different XML markup trick semantics,
such as TEI. Of course, this semantic conversion may change
(and, usually, it does change) the current structure of the
EARMARK document, returning a new EARMARK docu-

ment containing new elements and attributes. The following
excerpt shows how the fragmented elements, introduced in
the previous section, are returned by Fretta after this step,
considering the TEI tricks formalisation:

:fragment1 -first -element -l a :Element , c:List
; earmark:hasGeneralIdentifier "l"
; c:firstItem [c:itemContent :id-attr]
; c:nextItem [c:itemContent :next -attr]
; c:nextItem [c:itemContent :poursuivez]]].

:id-attr a :Attribute , c:Set
; earmark:hasGeneralIdentifier "id"
; earmark:hasNamespace

"http ://www.w3.org/xml/ns" ...

:next -attr a :Attribute , c:Set
; earmark:hasGeneralIdentifier "next" ...

4.4 Linearisation
The final step of the process takes the EARMARK docu-

ment, generated as a result of the previous step, and tries to
linearise it as an XML tree. If everything goes well, Fretta
returns an XML document that embeds overlapping ele-
ments by means of the tricks specified by the user in the
first step, otherwise an exception is returned. An exemplar
excerpt returned by the framework is:

<body >
<sp><speaker >Tibere </speaker >

<l xml:id="id1" next="id2">
Poursuivez ...</l></sp>

<sp><speaker >Agrippine </speaker >
<l xml:id="id2" next="id3">

Quoi , Seigneur?</l></sp >...</body >

5. EVALUATION
In order to verify the quality of the XML documents pro-

duced by Fretta, we performed an evaluation where we aimed
at comparing, according to particular principles, Fretta’s
outputs against a set of twelve TEI documents8 written by
experts, that represents our golden standard. We were inter-
ested in stressing the frameworks when handling milestones,
fragmentation and dominance embedding tricks. The eval-
uation took into account four different principles:

• well-formedness (WF) , i.e., whether the framework
returns well-formed XML documents;

• validity (V), i.e., whether the framework returns valid
XML documents according to the particular target
XML vocabulary;

• naturalness (N), i.e., how much the XML documents
returned by the framework are structurally similar ac-
cording to the golden standard;

• minimality (M), i.e., how much the amount of nodes
(i.e., elements and attributes) in the XML documents
returned by the framework varies from the golden stan-
dard.

8All the documents considered in the evaluation
are contained in the MOC platform, available at
http://mlcd.blackmesatech.com/mlcd/2011/W/moc-poc/.

As input for our framework, we used seven EARMARK
documents, obtained translating by hand the TEI docu-
ments within our golden standard, and we developed twelve
configuration files where we specified which tricks should
be used when converting the input documents. Finally, we
ran Fretta on these input documents using the associated
trick-specification documents (i.e., configuration files), and
finally evaluated the results according to the four principles
introduced above, following this rule: each output docu-
ment is evaluated according to each principle and gains 1 or
0 depending on whether the principle is fully satisfied. All
the results are summarised in Table 19. and are completely
available online and are completely available online

Table 1: Adherence to the evaluation principles of
the outcomes of Fretta – WF and V are not indicated
because they are always passed in our tests.

document
XML
tricks

N M

agrippine fragmentation yes yes

agrippine milestones yes yes

drivemycar fragmentation no no

johnlovesmary fragmentation yes yes

johnlovesmary milestones yes yes

peergynt fragmentation yes yes

peergynt milestones yes yes

peterpaulhammer milestones yes yes

thoughtalice fragmentation yes yes

titwillow fragmentation no yes

titwillow fragmentation no no

titwillow milestones no yes

These results shows how all the output documents are al-
ways fine for what concerns correctness and validity. More-
over, the main part of them (83%) continues to be minimal
against the documents in the golden standard, sometimes
even when the naturalness principle is not respected (33%).

6. CONCLUSIONS
In this work we introduced Fretta, a framework for con-

verting any EARMARK document (documents that allow
multiple overlapping hierarchies at the same time) into one
or more embedded XML markup structures. The resulting
multiple markup hierarchies are generated using well-known
workarounds widely studied in literature. Moreover, we eval-
uated Fretta according to a golden standard defined as a set
TEI documents made by experts.

We plan to expand our work in two different ways. On
the one hand, we want to extend the current implementa-
tion of Fretta to handle other tricks, and implement alterna-
tive kinds of semantics, at least one according to the ODT
format and another to the OOXML format. On the other

9A webpage with extended results and explanations is avail-
able at http://fpoggi.web.cs.unibo.it/cgi-bin/testData.php,
with a link for downloading Fretta, the documents of the
golden standard and the related EARMARK documents.

hand, we want to integrate Fretta in a much broader on-
going framework for the semi-automatic and round-trip con-
version from any supported XML format (embedding over-
lapping markup) into another, that will use EARMARK as
intermediate markup format.

7. REFERENCES
[1] Adida, B., Birbeck, M., McCarron, S., Pemberton, S.

(2008). RDFa in XHTML: Syntax and processing. W3C
Recommendation October 14 2008, World Wide Web
Consortium. http://www.w3.org/TR/rdfa-syntax/ (last
visited 31 October 2011).

[2] Beckett, D. (2004). RDF/XML syntax specification
(Rev.). W3C Recommendation February 10 2004,
World Wide Web Consortium.
http://www.w3.org/TR/REC-rdf-syntax/ (last visited
31 October 2011).

[3] Coombs, J. H., Renear, A. H., DeRose, S. J. (1987).
Markup Systems and the Future of Scholarly Text
Processing. In Communication of the ACM 30 (11):
933-947. DOI: 10.1145/32206.32209

[4] DeRose, S. (2004). Markup Overlap: A Review and a
Horse. In Proceedings of the Extreme Markup
Conference 2004. Montreal, Canada.

[5] Di Iorio, A., Peroni, S., Vitali, F. (2011). A Semantic
Web Approach To Everyday Overlapping Markup.
Journal of the American Society for Information
Science and Technology, 62 (9): 1696–1716. DOI:
10.1002/asi.21591

[6] Hickson, I. (2011). HTML5 - A vocabulary and
associated APIs for HTML and XHTML. W3C
Working Draft 25 May 2011, World Wide Web
Consortium. http://www.w3.org/TR/html5/ (last
visited 31 October 2011).

[7] Huitfeldt, C., Sperberg-McQueen, C. M. (2003).
TexMECS: An experimental markup meta-language for
complex documents.
http://decentius.aksis.uib.no/mlcd/2003/Papers/
texmecs.html (last visited 31 October 2011).

[8] Marinelli, P., Vitali, F., Zacchiroli, S. (2008). Towards
the unification of formats for overlapping markup. New
Review of Hypermedia and Multimedia, 14 (1), 57-94.

[9] Peroni, S., Gangemi, A., Vitali, F. (2011). Dealing with
Markup Semantics. In Proceedings of the 7th
International Conference on Semantic Systems
(i-Semantics 2011). Graz, Austria.

[10] Prud’hommeaux, E., Carothers, G. (2011). Turtle -
Terse RDF Triple Language. W3C Working Draft 09
August 2011, World Wide Web Consortium.
http://www.w3.org/TR/turtle/ (last visited 31
October 2011).

[11] Schonefeld, O., Witt, A. (2006). Towards validation of
concurrent markup. In Proceedings of the Extreme
Markup Languages 2006. Montreal, Canada.

[12] TEI Consortium. (2005). TEI P5: Guidelines for
electronic text encoding and interchange.
http://www.tei-c.org/Guidelines/P5 (last visited 31
October 2011).

[13] Tennison, J., Piez, W. (2002, August). The Layered
Markup and Annotation Language (LMNL). Presented
at the Extreme Markup Languages Conference 2002,
Montreal, Canada.

